Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase.

نویسندگان

  • Jie Qin
  • Barry P Rosen
  • Yang Zhang
  • Gejiao Wang
  • Sylvia Franke
  • Christopher Rensing
چکیده

In this article, a mechanism of arsenite [As(III)]resistance through methylation and subsequent volatization is described. Heterologous expression of arsM from Rhodopseudomonas palustris was shown to confer As(III) resistance to an arsenic-sensitive strain of Escherichia coli. ArsM catalyzes the formation of a number of methylated intermediates from As(III), with trimethylarsine as the end product. The net result is loss of arsenic, from both the medium and the cells. Because ArsM homologues are widespread in nature, this microbial-mediated transformation is proposed to have an important impact on the global arsenic cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic methylation and volatilization by arsenite S-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159.

Inorganic arsenic (As) is highly toxic and ubiquitous in the environment. Inorganic As can be transformed by microbial methylation, which constitutes an important part of the As biogeochemical cycle. In this study, we investigated As biotransformation by Pseudomonas alcaligenes NBRC14159. P. alcaligenes was able to methylate arsenite [As(III)] rapidly to dimethylarsenate and small amounts of tr...

متن کامل

Microbial methylation of metalloids: arsenic, antimony, and bismuth.

A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. ...

متن کامل

Volatilization of Arsenic from Polluted Soil by Pseudomonas putida Engineered for Expression of the arsM Arsenic(III) S-Adenosine Methyltransferase Gene

Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically...

متن کامل

Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations o...

متن کامل

Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis.

Arsenic-contaminated water is a serious hazard for human health. Plankton plays a critical role in the fate and toxicity of arsenic in water by accumulation and biotransformation. Spirulina platensis (S. platensis), a typical plankton, is often used as a supplement or feed for pharmacy and aquiculture, and may introduce arsenic into the food chain, resulting in a risk to human health. However, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 7  شماره 

صفحات  -

تاریخ انتشار 2006